

BIOREACTORES DE MEMBRANAS

Tratamientos biológicos con membranas

Francesc Andrés Ruiz Director Técnico Dim Water Solutions – Dimasa Grupo Wastewater and Biogas Technologies

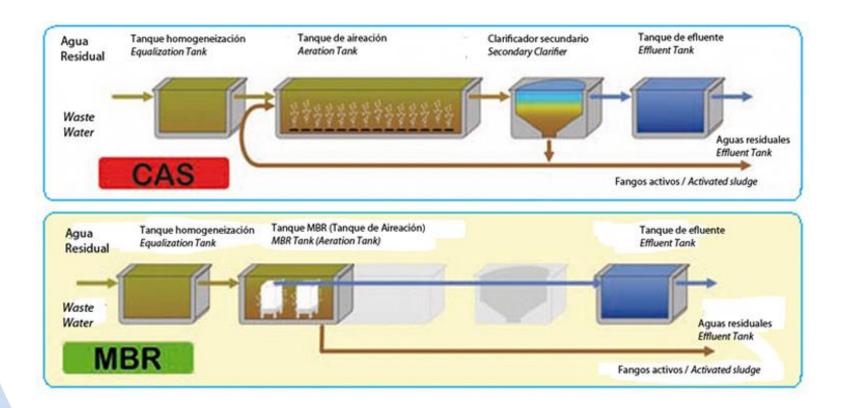
CONTENIDO

- 1. OBJETIVOS DE LA JORNADA
- 2.- ¿QUÉ ES UN MBR?
- 3.- DONDE Y PORQUE INSTALAR UN MBR
- 4.- CONFIGURACIONES SISTEMAS MBR
- 5.- TIPOS DE MODULOS
- 6.- MEMBRANAS DE FIBRA HUECA
- 7.- MEMBRANAS TUBULARES
- 8.- MEMBRANAS CERÁMICAS
- 9.- MEMBRANAS PLANAS
- 10.- NUEVOS MÚDULOS DE MEMBRANA PLANA
- 11.- CASOS PRACTICOS

1. OBJETIVOS DE LA JORNADA

El objeto de esta jornada, es transmitir conocimientos básicos sobre los sistemas MBR, diferentes tipos de membranas, sus diferentes configuraciones, y los campos de aplicación de los mismos.

2. ¿QUÉ ES UN MBR?


La tecnología de Biorreactor de Membrana (MBR) se puede definir como la combinación de dos procesos; degradación biológica y separación por membrana, en uno único, en el que los sólidos en suspensión y microorganismos responsables de la biodegradación son separados del agua tratada mediante una unidad de filtración por membrana. Por lo tanto, se distinguen dos partes principales:

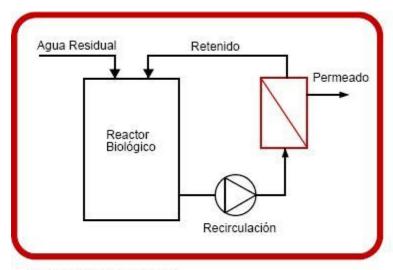
- Unidad biológica responsable de la degradación de los compuestos orgánicos.
- Módulo de filtración encargado de llevar a cabo la separación física del licor mezcla.

2. ¿QUÉ ES UN MBR?

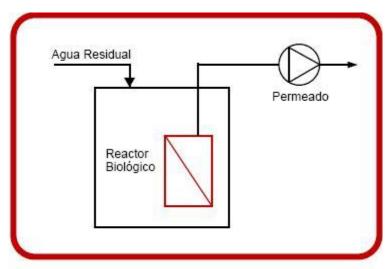
CONVENCIONAL VERSUS BIORREACTOR DE MEMBRANAS

3. DONDE Y PORQUE INSTALAR UN MBR?

Caso de las depuradoras:


La tecnología de Biorreactor de Membrana (MBR) esta indicada en los casos siguientes:

- Ampliación de EDAR´s existentes.
- Utilización como sistema terciario.
- Construcción nuevas EDAR, donde el objetivo sea el reúso.
- Construcción nuevas EDAR, en zonas de vertido sensibles.
- En industrias con altas cargas contaminantes y poco espacio para su ubicación.
- Industrias con vertidos afectados por estacionalidad (vinícola)
- EDAR en zona de costa, alta estacionalidad (MBR en calles separadas)



4. CONFIGURACIONES SISTEMAS MBR

TIPOS DE CONFIGURACIONES EN SISTEMAS MBR

MBR de Membrana externa

MBR de Membrana sumergida

5. TIPOS DE MODULOS MBR

TIPOS DE MODULOS DE MEMBRANAS

FIBRA HUECA

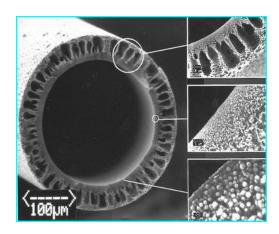
TUBULAR

MEMBRANA PLANA

CERAMICAS

6. MEMBRANAS DE FIBRA HUECA

FIBRA HUECA, VENTAJAS E INCONVENIENTES


Los módulos de fibra hueca, tienen su origen en el campo de la potabilización de aguas y posteriormente se pasaron a utilizar como terciarios y sistemas MBR. Existen varias configuraciones:

- Módulos presurizados de filtración dentro-fuera.
- Módulos presurizados de filtración fuera dentro.
- Módulos sumergidos de fijación en base.
- Módulos sumergidos (imitación membrana plana)
- Necesita continuos contra lavados.

El principal problema de estos equipos utilizados como MBR en la colmatación por causa del enredado de cabellos y biomasa.

Estas membranas están especialmente indicadas para tratamiento de aguas potables.

6. MEMBRANAS DE FIBRA HUECA

Detalle fibra hueca

Atascamiento fibras

7. MEMBRANAS TUBULARES

MEMBRANAS TUBULARES, VENTAJAS E INCONVENIENTES

Los módulos de membranas tubulares, fueron la evolución natural de las membranas de fibra hueca, pero con una mayor sección del tubo filtrante, para evitar atascos interiores.

- Muy utilizados en sistemas MBR por la firma WV.
- Permite trabajar con tasas de MLSS muy elevadas, hasta 25 gr/l

El principal problema de estos es que necesitan mover mucho caudal para poder conseguir una filtración efectiva. (recirculaciones de hasta 250 m3/h para conseguir un caudal de permeado de 6 m3/h).

Esto genera consumos energéticos muy elevados.

Además con el tiempo y si las limpiezas CIP no son muy efectivas, se va perdiendo sección interior, llegando a producirse el bloqueo total, siendo imposible su recuperación.

Dim Water Se Environmentally Sustant

8. MEMBRANAS CERÁMICAS

MEMBRANAS CERÁMICAS, VENTAJAS E INCOVENIENTES

Basados en el diseño del módulo tubular, pero con material cerámico.

- Muy utilizados en el sector industrial de agua complejas
- Permite trabajar con tasas de MLSS muy elevadas, hasta 25 gr/l
- Permite contar lavados a presión.
- Permite coches químicos

El principal problema de estos es que necesitan mover mucho caudal para poder conseguir una filtración efectiva. (recirculaciones de hasta 250 m3/h para conseguir un caudal de permeado de 6 m3/h).

- Esto genera consumos energéticos muy elevados.

8. MEMBRANAS CERÁMICAS

Detalle módulo

Bastidor UF cerámico

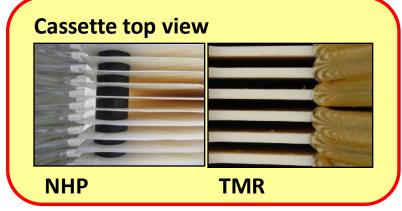
9. MEMBRANAS PLANAS

MEMBRANA PLANA VENTAJAS E INCONVENIENTES

Los módulos de membranas planas, se instalan siempre sumergidas en el interior del reactor biológico o en cámaras destinadas a su ubicación, lo cual permite utilizar el número de membranas necesarias en cada momento y en función del caudal a tratar.

- La principal ventaja de estos módulos, es el denominado canal abierto, esto es la separación existente entre las membranas desde la parte inferior a la parte superior del módulo.
- Esto evita la colmatación de las mismas.
- Limpieza química cada tres meses.
- No necesita de contra lavado continuos, al contrario que el resto de membranas.

- La principal desventaja frente al resto de membranas, es el número de metros cuadro de superficie de membrana por módulo.


Dim Water So

10. NUEVOS MODULOS DE MEMBARNA PLANA

MODULOS DE MEMBRANA TORAY

11. CASOS PRACTICOS

SECTOR VITIVINICOLA

Bodega La Cartuja, Évora, Portugal

Módulos UF de membrana plana

MBR Compacto – 150 m3/día

11. CASOS PRACTICOS

EDAR Vallvidrera – módulos fibra hueca

BIOREACTORES DE MEMBRANAS

Tratamientos biológicos con membranas

Francesc Andrés Ruiz Director Técnico Dim Water Solutions – Dimasa Grupo Wastewater and Biogas Technologies